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As most known genetic diseases are caused by point muta-
tions1, nucleotide substitution is a critical technology 
for generating desired mutations for disease modelling  

and more importantly for therapeutic correction of pathogenic 
variants2,3. Although the CRISPR–Cas9 system can efficiently gen-
erate double-stranded breaks that stimulate the homology-directed 
repair pathway in the presence of donor templates, precise genome 
editing through Cas9-stimulated homology-directed repair is  
inefficient, especially in non-dividing somatic cells4,5. Several 
groups have shown that fusion of cytidine or adenosine deaminases 
with DNA recognition modules, such as Cas9 nickase (Cas9n) or 
Cpf1, efficiently generates site-specific C·G-to-T·A or A·T-to-G·C 
conversions2,3,6,7.

Through fusion of cytidine deaminases, such as rAPOBEC1 (ref. 3),  
hAID8, hAPOBEC3A9–11 or PmCDA1 (refs. 12–14) at the amino (N)  
or carboxy (C) terminus of Cas9n (Cas9 D10A), cytidine base  
editors (CBEs) were developed to efficiently generate C-to-T tran-
sitions. Their efficiency was further enhanced by introducing a 
uracil glycosylase inhibitor domain either through direct fusion 
to the C terminus or separately delivered with CBEs13,15. Similarly, 
an adenosine base editor was developed through conjugation of 
Cas9n with TadA mutants, derived from an Escherichia coli trans-
fer RNA adenosine deaminase ecTadA, to deaminate adenosine in 
DNA backbones to generate A·T-to-G·C substitutions2. The base 
editors directly catalyse deamination to achieve nucleotide conver-
sion without generating double-stranded breaks, thus minimizing 
the formation of undesired mutations such as indels, large deletions, 
translocations or DNA rearrangements7. These features make them 
promising instruments in disease modelling and the improvement 
of production traits in crops and livestock and, more importantly, for 

gene therapy7. However, the base editors generate base conversions 
in a relatively narrow window, which limits their targeting scope.

The editing window of CBEs (such as BE3, BE4 or BE4max) is 
typically located 4–8 nucleotides downstream from the 5′ end of the 
targeted sequence distal to the protospacer adjacent motif (PAM) 
site3,13,16. Base editors could only edit the nucleotides within this win-
dow, which is determined by the intrinsic feature of distinct deami-
nases. Great efforts have been made to either reduce or increase the 
editing window to generate versatile base editors for various pur-
poses17,18. Three BE3s have been developed with the editing window 
within three nucleotides, but their activity is either comparable or 
reduced compared with BE3 (ref. 17). Through structure-based design 
and modifications of hAPOBEC3A, eA3A-BE3 has been developed 
to selectively generate C-to-T conversions within the TC motifs but 
not in a non-cognate bystander motif10. In contrast, base editors 
with increased targeting range are also valuable to generate more 
genotypes for saturation mutagenesis, disrupt gene function or cor-
rect genetic mutations for gene therapy. Through fusion of cytidine 
and adenosine deaminases with circularly permuted Cas9 variants, 
a series of CP-CBEmax and CP-ABEmax variants was generated 
with almost twice the editing window and reduced byproduct for-
mation18. However, these innovative modifications did not improve 
the editing efficiency. Several CBE variants with enhanced base 
editing activity have been developed through codon optimization, 
nuclear localization signal modification16,19 or molecular evolution 
through phage-assisted continuous evolution of distinct cytidine 
deaminases20, but they are inefficient at catalysing cytidines adja-
cent to the PAM site. Although expanding the editing window has 
been achieved via recruiting the engineered deaminase through sin-
gle guide RNA (sgRNA) tethering (CRISPR-X)21 or protein–protein  

Increasing the efficiency and targeting range 
of cytidine base editors through fusion of a 
single-stranded DNA-binding protein domain
Xiaohui Zhang1,5, Liang Chen1,5, Biyun Zhu1,5, Liren Wang1, Caiyu Chen1, Mengjia Hong1, 
Yifan Huang   1, Huiying Li1, Honghui Han2, Bailian Cai3, Weishi Yu1,4, Shuming Yin1, Lei Yang1, 
Zuozhen Yang4, Meizhen Liu1, Ying Zhang1, Zhiyong Mao   3, Yuxuan Wu1, Mingyao Liu1 and Dali Li   1 ✉

Cytidine base editors are powerful genetic tools that catalyse cytidine to thymidine conversion at specific genomic loci, 
and further improvement of the editing range and efficiency is critical for their broader applications. Through insertion of a 
non-sequence-specific single-stranded DNA-binding domain from Rad51 protein between Cas9 nickase and the deaminases, 
serial hyper cytidine base editors were generated with substantially increased activity and an expanded editing window 
towards the protospacer adjacent motif in both cell lines and mouse embryos. Additionally, hyeA3A-BE4max selectively cata-
lysed cytidine conversion in TC motifs with a broader editing range and much higher activity (up to 257-fold) compared with 
eA3A-BE4max. Moreover, hyeA3A-BE4max specifically generated a C-to-T conversion without inducing bystander mutations in 
the haemoglobin gamma gene promoter to mimic a naturally occurring genetic variant for amelioration of β-haemoglobinopathy, 
suggesting the therapeutic potential of the improved base editors.

Nature Cell Biology | www.nature.com/naturecellbiology

mailto:dlli@bio.ecnu.edu.cn
http://orcid.org/0000-0001-5832-7186
http://orcid.org/0000-0002-5298-1918
http://orcid.org/0000-0002-0046-8493
http://crossmark.crossref.org/dialog/?doi=10.1038/s41556-020-0518-8&domain=pdf
http://www.nature.com/naturecellbiology
Erin Wang
Highlight



Technical Report NATuRE CEll BioloGy

interaction modules (BE-PLUS)22, the activity of these CBEs remains 
limited, which hinders broader applications.

Here, we demonstrate that fusion of the single-stranded DNA- 
binding domain (ssDBD) from Rad51 (a critical protein involved in 
DNA repair), between the cytidine deaminases and Cas9n, dramati-
cally enhanced the editing efficiency of BE4max, A3A-BE4max and 
eA3A-BE4max without increasing indel activity, cellular toxicity 
or RNA- or sgRNA-dependent DNA off-target effects. These engi-
neered CBEs (hyper CBEs (hyCBEs)) exhibited enhanced activity 
in both cell lines and mouse embryos, demonstrating their broader 
applicability in disease modelling and gene therapy.

Results
Screen of ssDBDs to increase BE4max activity. Since cytidine  
deaminase mainly catalyses C-to-T conversion on the single-stranded 
DNA (ssDNA) substrate generated by Cas9n, we hypothesized 
that fusion of a non-sequence-specific ssDBD might increase the 
binding affinity and editing activity (Fig. 1a). To test our hypo
thesis, ten ssDBDs belonging to four structural topologies from  
different human proteins, including RPA70, RPA32, BRCA2, the 
HNRNPK KH domain, the PUF60 RNA recognition motif and 
the DNA-binding domain (DBD) from Rad51 (Supplementary 
Information)23, were cloned and fused to the N terminus of BE4max, 
and the C-to-T conversion activities were determined at two 
endogenous sites in HEK293T cells (Fig. 1b,c). High-throughput 
sequencing (HTS) demonstrated that two ssDBDs—Rad51DBD 
and RPA70-C—enhanced the activity of BE4max (Fig. 1c). Given 
the better performance, Rad51DBD was selected and either inserted 
between APOBEC1 and Cas9n (Rad51DBDm-BE4max) or fused 
to the C terminus of BE4max to estimate the optimal position for 
ssDBD fusion. Interestingly, the base editing efficiency was dramat-
ically increased when Rad51DBD was inserted in the middle. Thus, 
Rad51DBDm-BE4max is named hyper BE4max (hyBE4max) here-
after (Fig. 1c). Further examination of the total ten targets showed 
that the activity of hyBE4max in the conventional editing window 
(C4–C8) was higher than that of BE4max (average: ~15.4–69.6 
versus 10.2–47.7%). Also, it exhibited much higher activity at posi-
tions (C9–C15) proximal to the PAM site (average: 15.35–44.7% for 
hyBE4max and 4.7–22% for BE4max), and up to an 18-fold increase 
was observed at C11 on the TIM3-sg1 site (Fig. 1d,e). These data 
suggest that the major editing window of hyBE4max is extended 
from C4–C8 to C4–C12 (Fig. 1d,e), similar to that of CP-CBEmax 
(C4–C11)18. As CBEmax and CP-CBEmax have similar editing 
activity18, our data suggest that hyBE4max has higher activity than 
CP-CBEmax. However, hyBE4max was not efficient at editing cyti-
dine in a GC context (C11 in CDK10-sg1 and C13 in HPRT1-sg6) 
(Fig. 1d), similar to BE4max20. Meanwhile, hyBE4max retained a 
very low indel rate similar to BE4max (Fig. 1f).

Fusion of Rad51DBD dramatically increases the activity and 
editing window of A3A-BE4max. A3A-BE3 was generated through 
fusion of Cas9n with APOBEC3A, which is a very active cytidine 
deaminase variant in human cells and plants9–11. HyA3A-BE4max 
was generated and its efficiency was compared with A3A-BE4max20 
at ten endogenous sites in HEK293T cells (Fig. 2a). A3A-BE4max 
was very efficient at positions C3–C11, with an activity ranging from 
22.5–44.7%, but the activity decreased from C12 towards the PAM 
site with an efficiency from 2.7–27.1% (Fig. 2a,b). HyA3A-BE4max 
exhibited a substantial (1.2- to 2-fold) increase in activity from 
C3–C11 (14.5–70.3 versus 22.5–44.7%) and a more dramatic 
3.1- to 4.1-fold elevation at positions C12–C17 compared with 
A3A-BE4max (~6.6–62.4 versus 2.7–27.1%) on average (Fig. 2a,b).  
The major editing window of hyA3A-BE4max was extended to 
C3–C15 and hyA3A-BE4max was even active at C17 and C21 on 
some targets such as EGFR-sg5 (Fig. 2a). Similar indel rates between 
A3A-BE4max and hyA3A-BE4max were observed in the above ten 

targets (Fig. 2c). A previous study reported that A3A-BE3 exhib-
ited better performance on methylated cytidines than other cyti-
dine deaminases9. Investigation of the reported methylated targets9 
showed that the activity of hyA3A-BE4max was higher at the posi-
tions proximal to the PAM site than A3A-BE4max (Fig. 2d). These 
data show that ssDBD fusion also increased A3A-BE4max activity,  
suggesting that the fusion strategy might be a versatile method 
to enhance the performance of CBE variants. Considering that 
hyA3A-BE4max has a broader editing window and higher efficiency 
than previously reported tools such as CRISPR-X21 and targeted 
activation-induced cytidine deaminase-mediated mutagenesis8, it 
may be used to generate genome diversification for protein evolu-
tion or drug resistance mutation screens.

Efficient base editing of hyA3A-BE4max in mouse embryos. To 
test the activity of hyA3A-BE4max in vivo, hyA3A-BE4max messen-
ger RNA (mRNA) and sgRNA were injected into mouse embryos to 
create a premature stop codon in the Dystrophin gene to generate a 
Duchenne muscular dystrophy (DMD) model. The desired muta-
tion converts CAA into a TAA stop codon at position C10 in the tar-
get site (Fig. 3a). HTS of all the F0 mice receiving A3A-BE4max or 
hyA3A-BE4max with DMD-sg3 injection revealed that 91% (10/11 
for A3A-BE4max) and 100% (10/10 for hyA3A-BE4max) of the F0 
mice carried at least one C-to-T mutation at the target site (Fig. 3b 
and Extended Data Fig. 1a,b), suggesting that these two types of 
A3A-BE4max were very efficient. However, six of ten F0 mice (60%) 
harboured the desired C-to-T (C10 in DMD-sg3) homozygous non-
sense mutation after hyA3A-BE4max injection, but no homozygous 
mice were obtained in the A3A-BE4max group (Supplementary 
Table 1). Moreover, a significantly higher editing efficiency to cre-
ate the stop codon was detected in hyA3A-BE4max-treated pups 
(Fig. 3c, P = 0.0017). The disrupted expression of Dystrophin in the 
homozygous founder BD03 was confirmed by immunostaining 
(Fig. 3d). Next, we examined off-target effects of hyA3A-BE4max 
through HTS of 15 off-target sites predicted by Cas-OFFinder in 
three homozygous founders. No off-target mutations were detected, 
indicating its accuracy in animal embryos (Extended Data Fig. 2a).  
Moreover, the mutations were efficiently transmitted to the F1 
generation (Extended Data Fig. 2b). These results showed that 
hyA3A-BE4max is more efficient than A3A-BE4max in vivo, espe-
cially for cytidines proximal to the PAM, suggesting it is a powerful 
tool for disease model generation.

Fusion of Rad51DBD to eA3A-BE4max substantially promotes 
its efficiency and editing range with minimized bystander activ-
ity. HyA3A-BE4max is super active within a broader editing window, 
but accurate correction of point mutations is essential in circum-
stances where bystander mutations cannot be tolerated, such as in 
human gene therapy10. eA3A-BE3 containing a mutation (N57G) 
in hAPOBEC3A preferentially catalyses C-to-T conversion in TC 
motifs according to a TCR > TCY > VCN hierarchy, and provided up 
to 264-fold higher editing of cognate motifs than bystander motifs10. 
Therefore, we introduced the N57G mutation into hyA3A-BE4max 
to generate hyeA3A-BE4max and examined its editing activity at 
11 endogenous sites in HEK293T cells. Both eA3A-BE4max and 
hyeA3A-BE4max exhibited a high preference for TC motifs with 
greatly reduced activity at bystander cytidines compared with 
A3A-BE4max (Fig. 4a and Extended Data Fig. 3a). Among the tar-
gets that were efficiently edited (>20%) by eA3A-BE4max within 
the major editing window (C4–C9), hyeA3A-BE4max showed a 1.4- 
to 2.8-fold increase, with the editing efficiency ranging from 46.6–
78.4%. HyeA3A-BE4max had a more dramatic activity elevation at 
the cytidines outside the editing window (C10–C15) proximal to the 
PAM site compared with eA3A-BE4max. On average, the activity of 
hyeA3A-BE4max (efficiency: 7.6–79.1%) increased 1.7- to 15.2-fold 
compared with eA3A-BE4max (efficiency: 0.5–25.7%) (Fig. 4a b).  
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The P value was determined by two-tailed Student’s t-test. Statistical source data are provided with the paper.
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Unexpectedly, hyeA3A-BE4max was able to edit some loci that 
were difficult to mutate by eA3A-BE4max (Fig. 4a, bottom), with 
an increase up to 257-fold (C10 in EGFR-sg26). In the target site  

positions C11–C15, hyeA3A-BE4max was very active on the cyti-
dines in the TCR (A/G) motif (41–83%) but not in other motifs such 
as TCC and TCT (Fig. 4a). These data suggest that the base editing 
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efficiency of hyeA3A-BE4max is dramatically increased with fusion 
of Rad51DBD and maintains the specificity to edit cytidines within 
TC motifs (Fig. 4a,b). Like eA3A-BE4max, hyeA3A-BE4max gener-
ated indels at a very low rate (Fig. 4c).

We then performed off-target analysis through HTS of 50 poten-
tial off-target sites in total, including 24 predicted off-target sites from 
haemoglobin γ 1/2-117 (HBG1/2-117) sgRNA using the in silico 
Cas-OFFinder program24 and 26 previously investigated off-target 
sites from EMX1 site 1 and FNACF site 1 using modified digenome 
sequencing25. The analysis did not detect significant off-target 
mutations in eA3A-BE4max- and hyeA3A-BE4max-treated groups,  
suggesting they were highly specific compared with A3A-BE4max 
(Fig. 5a–c). Base editors have been reported to edit numerous unpre-
dictable off-target RNA sequences26,27. Consistent with a previous 
report28, we confirmed that A3A-BE4max generated much less RNA 
off-target editing than BE4max, and eA3A-BE4 catalysed almost no 
cellular RNA substrates, suggesting that fusion of ssDBD to indi-
vidual CBEs did not increase their RNA editing effects (Fig. 5d). 
Moreover, the higher activity of hyCBEs was not due to increased 
protein expression levels (Extended Data Fig. 3b). Importantly 
ssDBD fusion kept product purity high (Extended Data Fig. 4) and 
did not exhibit significant cellular or DNA toxicity (Fig. 5e,f).

Extremely high efficiency of hyeA3A-BE4max in mouse embryos 
to target a TC motif outside the conventional editing window. 
To investigate the efficacy of hyeA3A-BE4max at introducing muta-
tions in TC motifs in vivo, we attempted to introduce a C-to-T con-
version to create a premature stop codon in the Dmd gene (Fig. 6a). 
The target cytidine is at position C13 of the sgRNA outside the con-
ventional editing window of eA3A-BE4max. After microinjection 

of the zygotes, 13 of 15 (86.7%) F0 mice receiving hyeA3A-BE4max 
contained the desired mutation (Fig. 6b and Supplementary Table 2).  
In contrast, in the eA3A-BE4max-treated group, only 1 of 16 (6%) 
F0 mice (with a 22.5% C-to-T editing efficiency) was born with the 
desired mutation (Fig. 6b and Supplementary Table 2). HTS analy-
sis also showed that in hyeA3A-BE4max-treated mice, six out of 15 
(40%) F0 mice were homozygous, and the average editing efficiency 
of the 15 founders was 81% (Fig. 6c). The absence of Dmd gene 
expression in the homozygous founders was confirmed by immu-
nostaining (Fig. 6d). Through HTS analysis, no mutation was iden-
tified in 12 predicted off-target sites tested in three homozygous 
founders (Fig. 6e). Moreover, we performed whole-genome sequenc-
ing (WGS) analysis on wild-type and hyeA3A-BE4max-treated 
homozygous founder (DD11) mice following a reported method29. 
Among 175,058 NRG (R = A/G) PAM-containing sites bearing up 
to seven mismatches in the protospacer sequence, only one site was 
identified as a potential off-target site that was further determined as 
a false positive site through targeted NGS analysis of various tissues 
(Extended Data Fig. 5). These data showed that hyeA3A-BE4max 
has superior activity and specificity in C-to-T conversions in TC 
motifs outside the conventional activity window, suggesting that 
hyeA3A-BE4max expanded the targeting scope of eA3A-BE3 both 
in vitro and in vivo.

Efficient and accurate base conversion of hyeA3A-BE4max 
strongly activates γ-globin expression. We further exam-
ined whether hyeA3A-BE4max allows for precision base edit-
ing in an expanded target window for therapeutic purposes. 
β-haemoglobinopathies, such as β-thalassaemia and sickle cell 
disease, are caused by mutations in the haemoglobin β subunit 
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gene (HBB; encoding adult β-globin) locus30,31. Reactivation of 
γ-globin to form foetal haemoglobin with α-globin to functionally 
substitute for adult haemoglobin is an attractive strategy to treat 
β-haemoglobinopathies, as demonstrated by several pre-clinical 
studies using CRISPR–Cas9 or a base editor to modify genomic ele-
ments and activate γ-globin genes32–34. It was reported that a het-
erozygous point mutation (G-to-A) 117 base pairs (bp) upstream 
(−117) of the Aγ-globin gene produced 10–20% foetal haemoglobin 

in Greek patients with hereditary persistence of foetal haemoglo-
bin35 and this mutation disrupted the binding motif (TGACC) of 
BCL11A—a transcriptional repressor to silence HBG in adults36. 
We first examined whether A3A-BE4max and hyA3A-BE4max 
can generate a precise –117G-to-A mutation in the HBG promoter 
in HEK293T cells (Fig. 7a). A3A-BE4max generated G-to-A con-
versions at three sites (C3, C11 and C16, corresponding to −109, 
−117 and −122 in the HBG promoter), which were also edited 
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by hyA3A-BE4max with much higher activity. The editing effi-
ciency at C11 and C16 was increased 3.1- and 14-fold, respec-
tively, by hyA3A-BE4max (Fig. 7b). To increase the specificity, we 
tested eA3A-BE4max and hyeA3A-BE4max, since C11 was in the 
cognate TCR motif. Although eA3A-BE4max precisely induced 
C-to-T conversion on C11 without bystander mutations, the effi-
ciency was very low (Fig. 7b). However, hyeA3A-BE4max exhibited  

a threefold increase compared with eA3A-BE4max and did not gen-
erate detectable mutations at C3 and C16, suggesting its specificity 
(Fig. 7b). To further confirm that introduction of the –117G-to-A 
mutation could increase HBG expression, HUDEP-2(ΔGγ) cells37 
that carry only one γ-globin gene were employed to facilitate the 
genotype analysis. HUDEP-2(ΔGγ) cells were treated with len-
tiviral hyA3A-BE4max or hyeA3A-BE4max and then the stable 
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cells were pooled (Extended Data Fig. 6a). HTS data showed that 
hyeA3A-BE4max efficiently induced precise –117G-to-A muta-
tion in HUDEP-2 (ΔGγ) cells and exhibited higher activity at 
this site compared with hyA3A-BE4max (Fig. 7c and Extended 

Data Fig. 6b). γ-globin mRNA levels were substantially elevated 
in hyA3A-BE4max- and hyeA3A-BE4max-treated cells com-
pared with the parental HUDEP-2(ΔGγ) cells, and importantly 
hyeA3A-BE4max treatment exhibited threefold higher HBG mRNA 
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induction compared with hyA3A-BE4max (Fig. 7d and Extended 
Data Fig. 6c), suggesting that bystander mutations at −122 or −109 
sites could be detrimental to −117G-to-A conversion for reacti-
vation of HBG expression. This was further confirmed through 
generation of single-cell clones containing single or triple G-to-A 
mutations and subsequent HBG mRNA evaluation (Fig. 7e,f). 
These data show that hyeA3A-BE4max could specifically generate 
the –117G-to-A mutation, indicating its advantages towards future 
clinical application.

Discussion
In this study, we generated hyCBEs (hyBE4max, hyA3A-BE4max 
and hyeA3A-BE4max) through fusion of a non-sequence-specific 
ssDBD from Rad51 protein. These advanced CBEs have higher 
activity and a broader editing window than previously reported 
tools. We also showed their ability to generate accurate mutations in 
animal models to mimic human disease and their potential applica-
tions for gene therapy. Our study increases the toolbox of base edit-
ing, and these featured tools will facilitate our basic research as well 
as multiple applications including gene therapy.

Since nucleotide deaminases usually catalyse ssDNA substrates, 
we hypothesized that increasing the affinities of CBEs with their 
substrates would improve the editing activity. Previous studies 
have shown that the N terminus of Cas9 is relatively static while 
the C terminus undergoes dramatic conformational changes dur-
ing functioning. Based on this, fusion of deaminase or FokI to the 
N terminus of Cas9n is more efficient than to the C terminus2,3,38,39. 
Thus, we tested ten non-sequence-specific ssDBDs that were fused 
to the N terminus of BE4max. The RPA70-C domain from human 
RPA70 protein and Rad51DBD facilitated BE4max activity, but it 
is not clear why the other ssDBDs reduced its efficiency (Fig. 1c).  
It is possible that the binding activity of distinct ssDBDs varies.  
If the affinity is too strong, it will compete with the deaminase and 
inhibit its activity. If the affinity is too weak, it will have no effect. 
We also found that the base editor activity was further increased 
when the Rad51DBD was fused between rApobeC1 and Cas9n  
(Fig. 1c). It is likely that Rad51DBD functions as a long linker 
sequence in addition to ssDNA binding. Since it has been reported 
that a short 32-amino-acid linker between eA3A and nCas9 does 
not increase editing activity or alter editing window length10, we 
believe that the much longer linker may set free the deaminase for 
better interaction with substrates, increasing its activity and target-
ing range. Based on the above speculation, more ssDBDs of various  
lengths can be tested to generate more active CBEs. Moreover, 
ssDBD fusion had no adverse effects on indel activity (Figs. 1f, 
2c and 4c), protein expression (Extended Data Fig. 3b), product 
purity (Extended Data Fig. 4) or potential cell and DNA toxicity 
(Fig. 5e,f). Although RNA off-targeting editing in hyBE4max or 
hyA3A-BE4max still exists (Fig. 5d), this issue could be rapidly 
addressed with the development of new deaminase variants through 
the introduction of point mutations26,27. Moreover, no significant 
DNA off-target mutations were identified through both HTS at pre-
dicted off-target sites and WGS analysis, suggesting that hyCBEs are 
accurate tools. Since ssDBD increases the DNA affinity of hyCBEs, 
it is possible that potential sequence-independent off-target editing 
is also elevated. Taking into consideration that a typical sequenc-
ing depth (30–40×) cannot detect rare off-target mutations in 
cells or organisms40, a more stringent technique, such as GOTI 
(genome-wide off-target analysis by two-cell embryo injection)41, 
or an assay based on in-transition deamination within R-loops  
generated by an orthogonal Cas9 homologue42, would be required 
to identify truly unpredictable DNA off-target mutations.

We also noticed that the effect of the ssDBD in hyBE4max and 
hyA3A-BE4max was slightly different. As shown in Fig. 1d,e, the 
activity of hyBE4max was much higher, but the editing window 
was comparable to BE4max. However, both the activity and the 

editing window were increased in hyA3A-BE4max compared with 
A3A-BE4max. A more dramatic activity increase was observed at posi-
tions C11–C16 which were usually untargetable for A3A-BE4max, 
suggesting a substantial increase of the targeting range (Fig. 2a,b). 
This suggests that insertion of ssDBDs into the base editors would be 
a general engineering strategy to increase some performance features 
of CBEs, but the effect may vary with different cytidine deaminases. 
Further studies to examine the fusion of ssDBD to other deami-
nases, such as hAID21, PmCDA1 and their family members14, will be 
interesting to explore more CBE variants with upgraded characteris-
tics. Since the evolved CBEs20 are efficient in all sequence contexts, 
fusion of ssDBD to evoCBEs (evoAPOBEC1-BE4max) would gener-
ate still more active CBEs. Additionally, the targeting scope of the 
CBEs will be further expanded through substitution of Cas9 variants 
with distinct PAM sequence requirements, such as xCas9 (ref. 43), 
SpCas9-NG44, SaCas9 and other variants45,46.

In summary, this study demonstrates a strategy to engineer 
CBEs, which is compatible with other methods, such as codon opti-
mization, linker sequence optimization and deaminase mutation/
substitution. These CBEs significantly expand the targeting range 
and increase the activity both in vivo and in vitro, suggesting their 
broad use for research and therapeutic applications.
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Methods
Plasmid construction. The primers and DNA sequences used in this study are 
listed in Supplementary Tables 1–5 and the Supplementary Information. PCR 
was performed using KOD -Plus- Neo DNA Polymerase (Toyobo; KOD-401). 
Human codon-optimized Apobec3A and Apobec3A (N57G) were synthesized by 
Genewiz. Human-derived RPA70-A, RPA70-B, RPA70-C, RPA32-D, BRCA2-OB2, 
BRCA2-OB3, Rad51DBD (amino acids 1–114), the HNRNPK KH domain and the 
PUF60 RNA recognition motif were amplified from human 293T complementary 
DNA (cDNA). BE4max (112096) and lentiCRISPR version 2 (52961) were 
purchased from Addgene. ssDBD-BE4max, hyBE4max, hy(e)A3A-BE4max and 
BE4max-C-Rad51 plasmids and Lenti-117-EFS-hy(e)A3A-BE4max-P2A-GFP 
were constructed using a ClonExpress MultiS One Step Cloning Kit (Vazyme)47 
(Supplementary Information). sgRNA expression plasmids were constructed as 
described in the step-by-step protocol of generation of site-specific point mutations 
by serial hyCBEs that can be found at the Nature Protocol Exchange47. Briefly, 
oligonucleotides listed in Supplementary Table 1 were denatured at 95 °C for 5 min, 
followed by slow cooling to room temperature. Annealed oligonucleotides were 
ligated into BbsI-linearized U6-sgRNA(sp)-EF1α-GFP for sgRNA expression 
(Thermo Fisher Scientific)47,48.

Human cell culture. The HEK293T (ATCC; CRL-3216) cell line was cultured 
in Dulbecco’s modified Eagle’s medium (Gibco) supplemented with 10% (v/v) 
foetal bovine serum (Gibco). HUDEP-2 cells were maintained and expanded 
in serum-free expansion medium (Stem Cell Technologies) supplemented 
with human stem cell factor (50 ng ml−1; PeproTech), erythropoietin (3 IU ml−1; 
PeproTech), dexamethasone (1 µM; Sigma–Aldrich), doxycycline (1 µg ml−1; Takara 
Bio) and 2% Penicillin-Streptomycin (Gibco). All cell lines used were maintained at 
37 °C and 5% CO2 in an incubator47.

Cell transfection and genomic DNA or total mRNA preparation. For DNA base 
editing, HEK293T cells were seeded into 24-well plates (Corning) and transfected 
at approximately 80% confluency. A total of 750 ng ssDBD-BE4max/BE4max, 
hy(e)A3A-BE4max/BE4max-C-Rad51 and 250 ng sgRNA expression plasmids 
were co-transfected using polyethyleneimine (PEI; Polysciences) following the 
manufacturer’s recommended protocol. Three days later, transfected cells were 
digested with 0.25% trypsin (Gibco) for genomic DNA extraction. Cell lines or 
mouse tail tip genomic DNA were isolated using the TIANamp Genomic Kit 
(TIANGEN Biotech) according to the manufacturer’s instructions47. For RNA 
off-target analysis, HEK293T cells were seeded into 10-cm dishes and transfected 
with 30 µg Cas9n-P2A-GFP, BE4max, hyBE4max, A3A-BE4max, hyA3A-BE4max, 
eA3A-BE4max and hyeA3A-BE4max using PEI at approximately 80% confluency. 
Three days later, transfected cells were digested with 0.25% trypsin (Gibco) for 
fluorescence-activated cell sorting (FACS). FACS was carried out on a FACSAria 
III (BD Biosciences) using FACSDiva version 8.0.2 (BD Biosciences). Cells were 
gated on their population via forward/sideward scatter after doublet exclusion 
(Supplementary Information). Around 500,000 cells (top 15% green fluorescent 
protein (GFP) signal) were collected, and RNA was extracted according to the 
standard protocol.

Western blotting. For western blots, HEK293T cells were lysed 72 h after 
transfection using RIPA buffer supplemented with proteinase and phosphatase 
inhibitors. Total protein was quantified using the BCA Protein Assay kit (Thermo 
Fisher Scientific). Total protein (10 µg per well) was loaded into a 15-well 8% Tris 
gel, separated by electrophoresis, and transferred to a nitrocellulose membrane 
before blocking with TBST containing 1% BSA. Nitrocellulose membranes were 
incubated with a 1:10,000 dilution of Anti-GAPDH (Abcam; ab9485) and a 1:5,000 
dilution of Anti-CRISPR–Cas9 (Abcam; ab189380) overnight. Then, membranes 
were incubated with a 1:10,000 dilution of IRDye 800CW Goat anti-Rabbit IgG 
(H + L)(Abcam; ab216773) for 1 h and visualized using an Odyssey imager.

HUDEP-2 cell differentiation and quantitative PCR (qPCR). HUDEP-2 cells 
were differentiated in erythroid differentiation medium (IMDM; Corning) 
supplemented with 2% human blood type AB plasma (Sera Care), 1% l-glutamine, 
2 IU ml−1 heparin, 10 µg ml−1 recombinant human insulin, 3 IU ml−1 erythropoietin, 
330 μg ml−1 human holo-transferrin (Sigma–Aldrich), 100 ng ml−1 stem cell factor, 
1 µg ml−1 doxycycline and 2% penicillin/streptomycin. Differentiated HUDEP-2 
cells were surface stained with a 1:50 dilution of anti-CD235a-FITC (BioLegend; 
349103) and a 1:50 dilution of anti-CD49d-APC (Miltenyi; 304307) to confirm 
the differentiation stage. A minimum of 10,000 cell events were collected for 
each sample on a FACSAria III (BD Biosciences) using a FACSDiva version 8.0.2 
(BD Biosciences) and analysed with FlowJo version 10 software. On day 8 of 
differentiation, cells were harvested for total mRNA isolation. Isolated mRNA 
was reverse transcribed using HiScript II Q RT SuperMix (Vazyme). qPCR was 
performed on the QuantStudio 3 real-time PCR system (Applied Biosystems). 
HBG and HBB mRNA sequences were quantified by SYBR Green qPCR. qPCR 
primers are listed in Supplementary Table 4.

Lentivirus production and transduction of cell lines. Lentivirus production 
was performed as described in the protocol at the Nature Protocol Exchange47. 

Briefly, HEK293T cells were seeded into a 10-cm dish 1 d before transfection. 
At approximately 85% confluency, cells were co-transfected with 10 µg transfer 
plasmid (Lenti-117-EFS-hyA3A-BE4max-P2A-GFP or -117-EFS-hyeA3A-B
E4max-P2A-GFP), 5 µg pMD2.G and 7.5 µg psPAX2 using PEI. Virus-containing 
supernatant was harvested at 48 and 72 h after transfection. Supernatant was 
centrifuged at 8,000 r.p.m. for 10 min at 4 °C to precipitate the cell debris, filtered 
by passing through a 0.45-μm low protein binding membrane (Millipore) and 
then centrifuged at 25,000 r.p.m. for 2.5 h at 4 °C to concentrate the lentivirus. 
The lentivirus titre was determined with FACS. Briefly, lentiviruses were titrated 
and produced in triplicates after transduction of HEK293T cells. For each viral 
construct, 1 × 104 HEK293T cells were transduced in suspension with 0.0001, 
0.001, 0.01, 0.1, 1 or 10 μl viral supernatant in wells of a 96-well plate. In each 
well, culture medium was added to make the final volume 300 μl. Cells without 
any virus added were also plated in a 96-well plate (three wells as a control). 
Three days post-transduction, cells transduced with lentivirus were analysed to 
quantify the percentage of enhanced GFP using a Fortessa Flow Cell Analyzer 
(BD Biosciences). For each virus construct, the following score was calculated: 
titre (TU ml−1) = cell number × % EGFP × 103/virus stock volume (μl). Equal titres 
(multiplicity of infection: 40) of Lenti-117-EFS-hA3A-BE4max-P2A-GFP, Lenti-
117-EFS-heA3A-BE4max-P2A-GFP and lenti EFS-hA3A-BE4max-P2A-GFP 
in the presence of polybrene (8 µg µl−1) were used to transduce HUDEP-2(ΔGγ) 
cells. Then, 12 h after transduction, the medium was replaced with fresh culture 
medium. Three days after transduction, FACS was performed to sort the GFP+ 
HUDEP-2(ΔGγ) cells for the next culture. Cells were gated on their population via 
forward/sideward scatter after doublet exclusion46 (Supplementary Information).

Preparation of sgRNA and mRNA. sgRNA and mRNA preparation was performed 
as previously described48. The annealed sgRNA sequences were cloned into the 
T7-sgRNA sp-scaffold. The T7 promoter and different sgRNA templates were 
amplified using the primers IVT-PCF-F/R (sp) (Supplementary Table 4).  
The sgRNA sequences were then transcribed using the in vitro T7 Transcription 
Kit (MEGAshortscript Kit; Ambion). The T7 promoter was introduced into the 
(e)A3A-BE4max and hy(e)A3A-BE4max templates by PCR using the primers 
T7-mRNA(hCBE)-F/R (Supplementary Table 4). (e)A3A-BE4max and hy(e)
A3A-BE4max mRNA sequences were transcribed using the in vitro RNA 
transcription kit (mMESSAGE mMACHINE T7 ULTRA Kit; Ambion). Both 
sgRNA and mRNA were purified using a MEGAclear Kit (Ambion).

Animals and microinjection of zygotes. Animal manipulation was performed 
as previously described49. In brief, C57BL/6J and ICR mouse strains purchased 
from the Shanghai Laboratory Animal Center were housed in standard cages in 
a specific pathogen-free facility on a 12 h light/ 12 h dark cycle with ad libitum 
access to food and water. C57BL/6J and ICR mouse strains were used as embryo 
donors and foster mothers, respectively. All animal experiments conformed to 
the regulations drafted by the Association for Assessment and Accreditation of 
Laboratory Animal Care in Shanghai and were approved by the East China Normal 
University Center for Animal Research. For microinjection, solutions containing 
complexes of CBE or hyCBE mRNA (100 ng µl−1) and sgRNA (200 ng µl−1) were 
diluted in nuclease-free water and injected into cytoplasm using an Eppendorf 
TransferMan NK2 micromanipulator. Injected zygotes were transferred into 
pseudopregnant female mice immediately after injection.

Immunofluorescent staining. Tibialis anterior muscle from 5-week-old wild-type 
or Dmd mutant mice (CD07; DD01) was frozen in liquid nitrogen-cooled isopentane 
and immunostained with laminin or dystrophin antibodies. Dystrophin and 
laminin were detected with a 1:500 dilution of anti-dystrophin (Abcam; ab15277) 
or a 1:500 dilution of anti-laminin rabbit polyclonal antibody (Abcam; ab11575), 
respectively, followed by a 1:1,000 dilution of Alexa Fluor 594 Donkey anti-rabbit 
secondary antibody (Thermo Fisher Scientific). Fluorescence of sections was 
observed with a Leica DMI4000 B fluorescence microscope.

MTS assay and comet assay. HEK293T cells were seeded into 96-well plates 
(Corning) and transfected with 100 ng base editors at approximately 80% 
confluency. Then, 48 and 72 h after transfection, cell viability was measured by 
Promega CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS) 
according to the manufacturer’s instructions (Promega). A comet assay was 
performed as previously described50. In brief, HEK293T cells were seeded into 
24-well plates (Corning) and transfected with 750 ng base editors at approximately 
80% confluency. Then, 72 h after transfection, the cells were collected and 
resuspended in phosphate-buffered saline at a concentration of 3 × 105 cells per ml. 
The comet assay then was performed according to the manufacturer’s instructions 
(4250–050-K; Trevigen). DNA damage was measured in terms of tail moments 
using comet score software (casplab_1.2.3b2).

HTS and data analysis. On- and off-target genomic regions of interest were 
amplified from ~50–100 ng genomic DNA by PCR with the primers listed in 
Supplementary Tables 2 and 3. HTS amplification libraries were prepared by PCR 
using KOD -Plus- Neo DNA polymerase and site-specific primers containing 
an adaptor sequence (forward: 5′-GGAGTGAGTACGGTGTGC-3′; reverse: 
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5′-GAGTTGGATGCTGGATGG-3′) at the 5′ end46 (Supplementary Table 4 and 5). 
The above products were then subjected to a second round of PCR using primers 
containing different barcode sequences. The resulting libraries were mixed and 
sequenced on an Illumina HiSeq platform. The C-to-T, A and G conversions and 
indels in the HTS data were analysed using BE-Analyzer51 or CRISPResso2 (ref. 52).

RNA sequencing (RNA-Seq) experiments. A total of 3 µg RNA per sample was 
used as input material for the RNA sample preparations. Sequencing libraries 
were generated using a NEBNext Ultra RNA Library Prep Kit for Illumina (NEB) 
following the manufacturer’s recommendations, and index codes were added to 
attribute sequences to each sample. Briefly, mRNA was purified from total RNA 
using poly-T oligo-attached magnetic beads. Fragmentation was carried out using 
divalent cations under elevated temperature in NEBNext First Strand Synthesis 
Reaction Buffer (5×). First-strand cDNA was synthesized using random hexamer 
primer and M-MuLV Reverse Transcriptase (RNase H–). Second-strand cDNA 
synthesis was subsequently performed using DNA Polymerase I and RNase H. 
Remaining overhangs were converted into blunt ends via exonuclease/polymerase 
activities. After adenylation of 3′ ends of DNA fragments, a NEBNext Adaptor with 
a hairpin loop structure was ligated to prepare for hybridization. To select cDNA 
fragments of preferentially ~250–300 bp in length, the library fragments were 
purified with the AMPure XP system (Beckman Coulter). Then, 3 µl USER Enzyme 
(NEB) was incubated with size-selected, adaptor-ligated cDNA at 37 °C for 15 min 
followed by 5 min at 95 °C before PCR. Then, PCR was performed with Phusion 
High-Fidelity DNA polymerase, universal PCR primers and Index (X) Primer. 
Finally, PCR products were purified (AMPure XP system) and library quality was 
assessed on the Agilent 2100 Bioanalyzer system. The clustering of index-coded 
samples was performed on a cBot Cluster Generation System using TruSeq PE 
Cluster Kit v3-cBot-HS (Illumina), according to the manufacturer’s instructions. 
After cluster generation, the library preparations were sequenced on an Illumina 
HiSeq platform, and 125 bp/150 bp paired-end reads were generated.

RNA sequence variant calling and quality control. The analysis of RNA-Seq 
sequencing data was performed as follows. Raw data (raw reads) of FASTQ 
format were first processed through in-house Perl scripts. In this step, clean data 
(clean reads) were obtained by removing reads containing adapter and trimming 
low-quality bases with Trimmomatic. At the same time, the Q20, Q30 and GC 
contents of the clean data were calculated. All the downstream analyses were 
based on the clean data with high quality. An index of the reference genome 
was built using HISAT2 version 2.0.5 and paired-end clean reads were aligned 
to the reference genome (Ensemble GRCh38) using HISAT2 version 2.0.5. We 
selected HISAT2 as the mapping tool because it can generate a database of splice 
junctions based on the gene model annotation file and thus a better mapping 
result than other non-splice mapping tools. GATK (version 4.0) software was used 
to perform single-nucleotide polymorphism calling. Variant loci in base editor 
overexpression experiments were filtered to exclude sites without high-confidence 
reference genotype calls in the control experiment. The read coverage for a given 
single-nucleotide variant in a control experiment should be greater than the 
90th percentile of the read coverage across all single-nucleotide variants in the 
corresponding overexpression experiment. Additionally, these loci were required 
to have a consensus of at least 99% of reads containing the reference allele in the 
control experiment. RNA edits in Cas9n-P2A-GFP controls were filtered to include 
only loci with ten or more reads and with greater than 0% of reads containing 
alternate alleles. Base edits labelled as C-to-U comprise C-to-U edits called on the 
positive strand as well as G-to-A edits sourced from the negative strand.

WGS. WGS used mouse genomic DNA extracted from mouse tails, and was 
performed at a sequencing depth of 30× to 40× using an MGI2000 sequencer. 
We mapped the sequencing data using the BWA tool (version 0.7.17-r1188) of 
Sentieon (version 2019.11) software with a mouse reference genome (GRCm38/
mm10). Variants were identified using the Haplotyper tool of Sentieon software 
and the NCBI mouse Single Nucleotide Polymorphism Database was sorted out 
from the identified variants using Annovar (version 2018-04-16). To figure out the 
potential off-target sites, we picked out that C and G converted to the other bases 
among the remaining variants. Then, we excluded the common variants between 
the wild-type and the hyeA3A-BE4max-treated sample. The putative off-target sites 
were compared with the candidates from Cas-OFFinder considering mismatches 
up to 7 bp in length.

Statistics and reproducibility. Data are presented as means ± s.d. from 
independent experiments. All statistical analyses were performed on at least n = 3 
biologically independent experiments or three biologically independent samples 
unless otherwise noted in the figure captions. The experiments involving HUDEP-
2 differentiation and globin mRNA detection were performed six times with 

similar results. The experiments involving western blotting, immunofluorescence 
staining, genotyping of F0 or F1 mice and differentiation-stage evaluation 
of HUDEP-2 cells were performed three times with similar results and the 
representative data are shown. An unpaired two-tailed Student’s t-test was used to 
determine the significance of the differences between two groups, using GraphPad 
Prism 6 (GraphPad Software). Specific P values are indicated in the figure captions. 
P < 0.05 was considered significant.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
HTS data have been deposited in the NCBI Sequence Read Archive database under 
accession codes PRJNA566262, PRJNA566253 and PRJNA602779. RNA-Seq data 
have been deposited in the NCBI Sequence Read Archive database under accession 
code PRJNA599328. WGS data have been deposited in the NCBI Sequence Read 
Archive database under accession code PRJNA610447. Source data for Figs. 1–7  
and Extended Data Figs. 2–6 are presented with the paper. All other data 
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Extended Data Fig. 1 | Highly efficient base editing by A3A-BE4max or hyA3A-BE4max in mouse embryos. (a, b) Genotyping of F0 generation pups by 
A3A-BE4max and hyA3A-BE4max. The frequencies of WT and mutant alleles were determined by analyzing HTS using BE-analyzer. The percentage on 
the right represents the frequency of the indicated mutant allele with the corresponding mutation-induced amino acid conversion shown in parentheses. 
The frequency of the wild-type allele was omitted. Wt, wild-type.
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Extended Data Fig. 2 | Off-target analysis and germline transmission of the founders derived from hyA3A-BE4max injection. (a) HTS was performed 
with mouse tails to determine editing efficiencies at 15 potential off-target sites in three Dmd mutant F0 mice (#BD03, #BD04 and #BD07). Mismatched 
nucleotide letters are indicated in lowercase. Data are means ± SD (n = 3 mice).(b) HTS alignments of mutant sequences from F1 generated by mating 
founder #BD12(♀) with Wt (♂). The column on the right indicates frequencies of mutant alleles. Wt, wild-type.Statistical source data are provided in 
Source Data Extended Data Fig. 2.
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Extended Data Fig. 3 | Comparison of base editing efficiency and protein levels by CBEs and hyCBEs in HEK293T cells. (a)Comparison of base editing 
efficiency induced by A3A-BE4max or hyeA3A-BE4max in HEK293T cells. The average mutation percentage derived from three independent experiments 
of A3A-BE4max and hyeA3A-BE4max at the same site is listed. Some of the data (hyeA3A-BE4max) are the same as presented in Fig. 4a. Statistical 
source data are provided in Source Extended Data Fig. 3. (b) The protein levels of BE4max, hyBE4max, A3A-BE4max, hyA3A-BE4max, eA3A-BE4max and 
hyeA3A-BE4max were determined by Western blotting in HEK293T cells 3 days after transfection of similar amounts of plasmid DNA. Specific antibodies 
against Cas9 (top) or GAPDH (bottom) were used. Western blotting images are representative of three independent experiments. Unprocessed blots are 
shown in Source Data Extended Data Fig. 3.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparison of base editing product purity induced by variant base editors in HEK293T cells. (a) Comparison of base editing 
products induced by BE4max vs hyBE4max. HTS data were analyzed and the ratio of each type of nucleotides was listed on each target position. Data 
are means ± SD (n = 3 independent experiments). (b) Comparison of base editing products induced by A3A-BE4max vs hyA3A-BE4max. HTS data 
were analyzed and the ratio of each type of nucleotides was listed on each target position. Data are means ± SD (n = 3 independent experiments) (c) 
Comparison of base editing product induced by eA3A-BE4max vs hyeA3A-BE4max. HTS data were analyzed and the ratio of each type of nucleotides was 
listed on each target position. The individual data points are shown as black (C > T), light green (C > A) and light red (C > G) dots. Data are means ± SD 
(n = 3 independent experiments). Statistical source data are provided in Source Data Extended Data Fig. 4.
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Extended Data Fig. 5 | Whole genome sequencing of Dmd F0 (#DD11) and wild-type (Wt) mice. (a) Summary of genome sequencing analysis. WGS 
for a Dmd mutant mouse (#DD11) and a wild type mouse (Wt) were performed. A total of 82,573 and 62,359 SNPs were identified for #DD11 and Wt, 
respectively. After filtering out dbSNP (naturally occurring variants in the SNP database), 20,387 SNPs were obtained in the #DD11 genome. Then the 
sequences at the remaining SNP sites were compared with all on-/off-target sequences (20 bp). (b) Summary of on-/off-target site information. A total 
of 175,058 sites, including 1 on-target site and 20; 374; 2,869; 22,335; and 148,569 off-target sites with 3, 4, 5, 6, or 7 mismatch/es, respectively, were 
analyzed. (c) Summary of the whole-genome sequencing. (d) Summary of off-target analysis. After comparing the sequences at the remaining SNP sites 
with the 175,058 on-/off-target sequences (20 bp), the C-to-T substitution was only detected within the on-target sequencing in #DD11. (e) Validation 
the off-target candidate site determined in (d) using targeted deep sequencing of genomic DNA isolated from various #DD11 organs (heart, liver, lung and 
tail). Mismatched nucleotides and PAM sequences are shown in red and in blue, respectively. Data represent mean from two independent experiments. 
Statistical source data are provided in Source Data Extended Data Fig. 5.
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Extended Data Fig. 6 | Indels and differentiation stage evaluation of HUDEP-2 (ΔGγ) cells after viral infection. (a) Schematic representation of lentivirus 
constructs for HUDEP-2 infection.Psi+, Psi packaging signal; RRE, Rev response element; cPPT, central polypurine tract; EFS, elongation factor 1a short 
promoter; Bp-NLS, bipartite nuclear localization signals; A3A, derived from human Apobec3A; Rad51DBD, derived human rad51 single strand DNA binding 
protein domain; spCas9n, Cas9 D10A; P2A, 2 A self-cleaving peptide; WPRE, post-transcriptional regulatory element; UGI, Uracil DNA glycosylase 
inhibitor; EGFP, a maker for FACS. (b) Comparison of indels generated by lenti-hyA3A-BE4max or lenti-hyeA3A-BE4max treated HUDEP-2(ΔGγ) cells. 
Data are means ± SD (n = 3 independent experiments). P value was determined by two-tailed Student’s t test. (c) Erythroid differentiation validation of 
HUDEP-2 (ΔGγ) cells evaluated by anti α4-integrin(APC) and anti CD235a(FITC) surface markers, 8 days after differentiation. FACS data analysis are 
representative of three independent experiments. Statistical source data are provided in Source Data Extended Data Fig. 6.
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