新闻动态
企业新闻
媒体报道
发表文献

Published PAPER发表文献

  • 2016

    He Y, Peng S, Wang J, et al. Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer[J]. Nature Communications, 2016, 7(1).

    Androgen receptor (AR) antagonist MDV3100 is the first therapeutic approach in treating castration-resistant prostate cancer (CRPC), but tumours frequently become drug resistant via multiple mechanisms including AR amplification and mutation. Here we identify the small molecule Ailanthone (AIL) as a potent inhibitor of both full-length AR (AR-FL) and constitutively active truncated AR splice variants (AR-Vs). AIL binds to the co-chaperone protein p23 and prevents AR's interaction with HSP90, thus resulting in the disruption of the AR-chaperone complex followed by ubiquitin/proteasome-mediated degradation of AR as well as other p23 clients including AKT and Cdk4, and downregulates AR and its target genes in PCa cell lines and orthotopic animal tumours. In addition, AIL blocks tumour growth and metastasis of CRPC. Finally, AIL possesses favourable drug-like properties such as good bioavailability, high solubility, lack of CYP inhibition and low hepatotoxicity. In general, AIL is a potential candidate for the treatment of CRPC.
  • 2016

    Guan Y, Ma Y, Li Q, et al. CRISPR/Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse[J]. Embo Molecular Medicine, 2016, 8(5): 477-488.

    The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies.
  • 2016

    Wang J, Hu K, Guo J, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK[J]. Nature Communications, 2016, 7(1): 11363-11363.

    No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21WAF1/CIP1, leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21WAF1/CIP1, either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21WAF1/CIP1. Co-administration of BI-2536 and fasudil either in the LSL-KRASG12D mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers.
  • 2015

    Wang L, Shao Y, Guan Y, et al. Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos[J]. Scientific Reports, 2015: 17517-17517.

    The CRISPR-Cas RNA-guided system has versatile uses in many organisms and allows modification of multiple target sites simultaneously. Generating novel genetically modified mouse and rat models is one valuable application of this system. Through the injection of Cas9 protein instead of mRNA into embryos, we observed fewer off-target effects of Cas9 and increased point mutation knock-in efficiency. Large genomic DNA fragment (up to 95 kb) deletion mice were generated for in vivo study of lncRNAs and gene clusters. Site-specific insertion of a 2.7 kb CreERT2 cassette into the mouse Nfatc1 locus allowed labeling and tracing of hair follicle stem cells. In addition, we combined the CreLoxp system with a gene-trap strategy to insert a GFP reporter in the reverse orientation into the rat Lgr5 locus, which was later inverted by Cre-mediated recombination, yielding a conditional knockout/reporter strategy suitable for mosaic mutation analysis.
  • 2014

    Shao Y, Guan Y, Wang L, et al. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos[J]. Nature Protocols, 2014, 9(10): 2493-2512.

    Conventional embryonic stem cell (ESC)-based gene targeting, zinc-finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN) technologies are powerful strategies for the generation of genetically modified animals. Recently, the CRISPR/Cas system has emerged as an efficient and convenient alternative to these approaches. We have used the CRISPR/Cas system to generate rat strains that carry mutations in multiple genes through direct injection of RNAs into one-cell embryos, demonstrating the high efficiency of Cas9-mediated gene editing in rats for simultaneous generation of compound gene mutant models. Here we describe a stepwise procedure for the generation of knockout and knock-in rats. This protocol provides guidelines for the selection of genomic targets, synthesis of guide RNAs, design and construction of homologous recombination (HR) template vectors, embryo microinjection, and detection of mutations and insertions in founders or their progeny. The procedure from target design to identification of founders can take as little as 6 weeks, of which <10 d is actual hands-on working time.
  • 2013

    Qiu Z, Liu M, Chen Z, et al. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases[J]. Nucleic Acids Research, 2013, 41(11).

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background.
请输入您想查 |
返回顶部