新闻动态
企业新闻
知识大讲堂
发表文献

Published literature发表文献

年份:
  • 2020

    Zhang, X., Zhu, B., Chen, L. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nature Biotechnology (2020).

    Although base editors are useful tools for precise genome editing, current base editors can only convert either adenines or cytosines. We developed a dual adenine and cytosine base editor (A&C-BEmax) by fusing both deaminases with a Cas9 nickase to achieve C-to-T and A-to-G conversions at the same target site. Compared to single base editors, A&C-BEmax’s activity on adenines is slightly reduced, whereas activity on cytosines is higher and RNA off-target activity is substan- tially decreased.
  • 2020

    Yang L, Wang L, Huo Y, et al. Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing [published online ahead of print, 2020 May 7].

    Correction to: Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants
  • 2020

    Zhang X, Chen L, Zhu B, et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain [published online ahead of print, 2020 May 11]. Nature Cell Biology. 2020.

    Cytidine base editors are powerful genetic tools that catalyse cytidine to thymidine conversion at specific genomic loci, and further improvement of the editing range and efficiency is critical for their broader applications. Through insertion of a non-sequence-specific single-stranded DNA-binding domain from Rad51 protein between Cas9 nickase and the deaminases, serial hyper cytidine base editors were generated with substantially increased activity and an expanded editing window towards the protospacer adjacent motif in both cell lines and mouse embryos. Additionally, hyeA3A-BE4max selectively cata- lysed cytidine conversion in TC motifs with a broader editing range and much higher activity (up to 257-fold) compared with eA3A-BE4max. Moreover, hyeA3A-BE4max specifically generated a C-to-T conversion without inducing bystander mutations in the haemoglobin gamma gene promoter to mimic a naturally occurring genetic variant for amelioration of β-haemoglobinopathy, suggesting the therapeutic potential of the improved base editors.
  • 2020

    Wang L, Li L, Ma Y, Hu H, et al. Reactivation of γ-globin Expression through Cas9 or Base Editor to Treat β-Hemoglobinopathies. Cell Research, 2020,1

    Mutations in the β-globin gene, the essential component of adult hemoglobin (HbA; α2β2), results in either a production of aberrant sickle hemoglobin (HbS) leading to sickle cell disease (SCD) or an insufficient β-globin synthesis leading to β-thalassemia. These two major forms of β-hemoglobinopathies cause impaired erythropoiesis and life-threatening anemia. Clinical evidence has suggested that re-activation of fetal γ-globin (HBG) gene expression which is normally silenced after birth by certain genetic mutations can ameliorate the clinical course of β- hemoglobinopathies 1, 2. In β-thalassemia, elevated levels of fetal γ-globin interact with α-globin to form fetal hemoglobin (HbF; α2γ2) restoring the α/β-like globin ratio and in SCD the γ-globin reduces HbS polymerization.
请输入您想查 |
返回顶部